3,449 research outputs found

    2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

    Full text link
    We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2182^{18}) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (409634096^3) particle cosmological simulations, accounting for 4×10204 \times 10^{20} floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.Comment: 12 pages, 8 figures, 77 references; To appear in Proceedings of SC '1

    Precision Determination of the Mass Function of Dark Matter Halos

    Full text link
    The predicted mass function of dark matter halos is essential in connecting observed galaxy cluster counts and models of galaxy clustering to the properties of the primordial density field. We determine the mass function in the concordance Λ\LambdaCDM cosmology, as well as its uncertainty, using sixteen 102431024^3-particle nested-volume dark-matter simulations, spanning a mass range of over five orders of magnitude. Using the nested volumes and single-halo tests, we find and correct for a systematic error in the friends-of-friends halo-finding algorithm. We find a fitting form and full error covariance for the mass function that successfully describes the simulations' mass function and is well-behaved outside the simulations' resolutions. Estimated forecasts of uncertainty in cosmological parameters from future cluster count surveys have negligible contribution from remaining statistical uncertainties in the central cosmology multiplicity function. There exists a potentially non-negligible cosmological dependence (non-universality) of the halo multiplicity function.Comment: 4 pages, 3 figures, submitted to ApJ

    Barriers, control and identity in health information seeking among African American women

    Full text link
    Qualitative research methods were used to examine the role of racial, cultural, and socio-economic group (i.e., communal) identities on perceptions of barriers and control related to traditional and internet resources for seeking health information. Eighteen lower income, African American women participated in training workshops on using the internet for health, followed by two focus groups. Transcripts were analyzed using standardized coding methods. Results demonstrated that participants perceived the internet as a tool for seeking health information, which they believed would empower them within formal healthcare settings. Participants invoked racial, cultural, and socio-economic identities when discussing barriers to seeking health information within healthcare systems and the internet. The findings indicate that the internet may be a valuable tool for accessing health information among lower income African American women if barriers are reduced. Recommendations are made that may assist health providers in improving health information seeking outcomes of African American women

    On the Rates of Type Ia Supernovae in Dwarf and Giant Hosts with ROTSE-IIIb

    Get PDF
    We present a sample of 23 spectroscopically confirmed Type Ia supernovae that were discovered in the background of galaxy clusters targeted by ROTSE-IIIb and use up to 18 of these to determine the local (z = 0.05) volumetric rate. Since our survey is flux limited and thus biased against fainter objects, the pseudo-absolute magnitude distribution (pAMD) of SNeIa in a given volume is an important concern, especially the relative frequency of high to low-luminosity SNeIa. We find that the pAMD derived from the volume limited Lick Observatory Supernova Search (LOSS) sample is incompatible with the distribution of SNeIa in a volume limited (z<0.12) sub sample of the SDSS-II. The LOSS sample requires far more low-luminosity SNeIa than the SDSS-II can accommodate. Even though LOSS and SDSS-II have sampled different SNeIa populations, their volumetric rates are surprisingly similar. Using the same model pAMD adopted in the SDSS-II SNeIa rate calculation and excluding two high-luminosity SNeIa from our sample, we derive a rate that is marginally higher than previous low-redshift determinations. With our full sample and the LOSS pAMD our rate is more than double the canonical value. We also find that 5 of our 18 SNeIa are hosted by very low-luminosity (M_B > -16) galaxies, whereas only 1 out 79 nearby SDSS-II SNeIa have such faint hosts. It is possible that previous works have under-counted either low luminosity SNeIa, SNeIa in low luminosity hosts, or peculiar SNeIa (sometimes explicitly), and the total SNeIa rate may be higher than the canonical value.Comment: 18 pages; accepted for publication in The Astronomical Journa

    pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen^(2+/+) Contacts Through Use of Radial n^+p-Si Junction Microwire Array Photoelectrodes

    Get PDF
    The effects of introducing an n^+-doped emitter layer have been evaluated for both planar Si photoelectrodes and for radial junction Si microwire-array photoelectrodes. In contact with the pH-independent, one-electron, outer-sphere, methyl viologen redox system (denoted MV^(2+/+)), both planar and wire array p-Si photoelectrodes yielded open-circuit voltages, V_(oc), that varied with the pH of the solution. The highest V_(oc) values were obtained at pH = 2.9, with V_(oc) = 0.53 V for planar p-Si electrodes and V_(oc) = 0.42 V for vapor−liquid−solid catalyzed p-Si microwire array samples, under 60 mW cm^(−2) of 808 nm illumination. Increases in the pH of the electrolyte produced a decrease in V_(oc) by approximately −44 mV/pH unit for planar electrodes, with similar trends observed for the Si microwire array electrodes. In contrast, introduction of a highly doped, n^+ emitter layer produced V_(oc) = 0.56 V for planar Si electrodes and V_(oc) = 0.52 V for Si microwire array electrodes, with the photoelectrode properties in each system being essentially independent of pH over six pH units (3 < pH < 9). Hence, formation of an n^+ emitter layer not only produced nearly identical photovoltages for planar and Si microwire array photoelectrodes, but decoupled the band energetics of the semiconductor (and hence the obtainable photovoltage) from the value of the redox potential of the solution. The formation of radial junctions on Si microwire arrays thus provides an approach to obtaining Si-based photoelectrodes with high-photovoltages that can be used for a variety of photoelectrochemical processes, including potentially the hydrogen evolution reaction, under various pH conditions, regardless of the intrinsic barrier height and flat-band properties of the Si/liquid contact
    • …
    corecore